Differential Evolution Using Opposite Point for Global Numerical Optimization
نویسندگان
چکیده
The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and extremely difficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of benchmark test functions for global numerical optimization. Compared with several existing algorithms, the performance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed, and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”, respectively.
منابع مشابه
MULTI-OBJECTIVE OPTIMIZATION OF ARCH DAMS USING DIFFERENTIAL EVOLUTION METHODS
For optimization of real-world arch dams, it is unavoidable to consider two or more conflicting objectives. This paper employs two multi-objective differential evolution algorithms (MoDE) in combination of a parallel working MATLAB-APDL code to obtain a set of Pareto solutions for optimal shape of arch dams. Full dam-reservoir interaction subjected to seismic loading is considered. A benchmark ...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملSynthesis of the -distribution as an aid to stochastic global optimization
The -distribution is used as a point generation scheme in global optimization. Two population set-based global optimization algorithms are considered. These are the differential evolution (DE) and the controlled random search (CRS) algorithms. The point generation schemes of DE and CRS are hybridized with the random variate. The hybridization uses a probabilistic combination of the point genera...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملHow to Speed up Optimization? Opposite-center Learning and Its Application to Differential Evolution
This paper introduces a new sampling technique called Opposite-Center Learning (OCL) intended for convergence speed-up of meta-heuristic optimization algorithms. It comprises an extension of Opposition-Based Learning (OBL), a simple scheme that manages to boost numerous optimization methods by considering the opposite points of candidate solutions. In contrast to OBL, OCL has a theoretical foun...
متن کامل